Lecture materials and slides
Lecture slides
Project reports
- 1 - Detecting and Watermarking text generated by Large Language Models 🏆
Pierre Fernandez, Pavan Kartheek Rachabathuni, ANAMARIA-ROBERTA PREDA, Felipe Torrres Figueroa, Vitjan Zavrtanik, Roberto Amoroso, Robin San Roman
- 2 - Detecting and Watermarking text generated by Large Language Models
Daryna Dementieva, Amelia Sorrenti, Badr Youbi Idrissi, Monica Millunzi, Lorenzo Baraldi
- 3 - Detecting and Watermarking text generated by Large Language Models
Chenyu Zhang, Tural Mammadov, Federico Betti, Emmanouil Angelis, Megi Dervishi, Alberto Vitto
- 4 - Efficient Foundation Model Training Using FLIP 🏆
Bo Wan, Luca Zanella, Francesco Tonini, Giancarlo Paoletti, Ayush Kumar Rai, Federico Cocchi
- 5 - Efficient Foundation Model Training Using FLIP
Amir Hamza, Simone Alberto Peirone, Rochelle Choenni, Roman Pflugfelder, Tingyu Qu, Giuseppe Cartella
- 6 - Efficient Foundation Model Training Using FLIP
Vitus Benson, Gorjan Radevski, Beatrice Portelli, Emanuele Vivoli, Mingxiao Li, Nicholas Moratelli
- 7 - Multi-Instance-Learning (MIL) models to Perform a Multi-Scale Classification of Large Histological Images (WSIs)
Gennaro Iannuzzo, Rutger Hendrix, Andrea Favilli, Weronika Hryniewska-Guzik, Luca Lumetti, Mattia Paladino
- 8 - Multi-Instance-Learning (MIL) models to Perform a Multi-Scale Classification of Large Histological Images (WSIs)
Alex Falcon, Ali Abdari, Roberto Basla, Putra Manggala, Sonali Andani, Giacomo Capitani
- 9 - Per-Object Distance Estimation from Monocular Images
Davide Alessandro Coccomini, Jérôme Fink, BIN REN, Aniello Panariello, Luca Barsellotti, Enrico Martini
- 10 - Per-Object Distance Estimation from Monocular Images
Federico Vasile, Giulia Castagnolo, Tsung-Ming (Nick) Tai, Matteo Fincato, Mirco De Marchi, Gianluca Mancusi
- 11 - Predicting gene and protein expression levels from DNA and protein sequences exploiting Transformer-based architectures
Angelo Casolaro, Nicola Dall’Asen, Francesca Miccolis, Martin Menabue
- 12 - Predicting gene and protein expression levels from DNA and protein sequences exploiting Transformer-based architectures
Teemu Sarapisto, Vincenzo Mariano Scarrica, Mathurin VIDEAU, Vittorio Pippi, Emanuele Frascaroli, Brandon Wily Viglianisi
- 13 - Using Neural Radiance Fields in real scenarios
Gabriele Mario Caddeo, (Cosmo) Haoyu Wei, Lorenzo Bianchi, Emanuele Balloni, Alessandro Simoni, Michele Boldo
- 14 - Using Neural Radiance Fields in real scenarios 🏆
Snehal Jauhri, Chang Liu, Kai Konen, Sanket Sabharwal, Davide Di Nucci, Fabio Quattrini